

Communication

A General Strategy to Elisabethane Diterpenes: Stereocontrolled Synthesis of Elisapterosin B via Oxidative Cyclization of an Elisabethin Precursor

Nobuaki Waizumi, Ana R. Stankovic, and Viresh H. Rawal

J. Am. Chem. Soc., **2003**, 125 (43), 13022-13023• DOI: 10.1021/ja035898h • Publication Date (Web): 04 October 2003

Downloaded from http://pubs.acs.org on March 30, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 2 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 10/04/2003

A General Strategy to Elisabethane Diterpenes: Stereocontrolled Synthesis of Elisapterosin B via Oxidative Cyclization of an Elisabethin Precursor

Nobuaki Waizumi,§ Ana R. Stankovic, and Viresh H. Rawal*

Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637

Received May 1, 2003; E-mail: vrawal@uchicago.edu

Over the past few years, Rodríguez and co-workers have reported the isolation of a series of structurally novel metabolites (e.g., 1-4) from the gorgonian sea whip *Pseudopterogorgia elisabethae*, collected from the waters near San Andréas Island, Colombia.¹ The more intricate members of the family were suggested to be biosynthesized from elisabethin A, which in turn arises from geranylgeranyl pyrophosphate via a serrulatane precursor. The confluence of structural complexity and interesting biological activity has made these terpenes attractive targets for chemical synthesis.² In connection with the development of a general strategy to these natural products, we describe here the stereocontrolled asymmetric synthesis of the elisabethin skeleton and its oxidative cyclization to elisapterosin B (2),³ a potent in vitro inhibitor of *Mycobacterium tuberculosis* H37Rb.¹

Our synthetic plan to elisabethin and elisapterosin B (Scheme 1) involves a series of diastereoselective reactions to set all of the stereocenters commencing with the single asymmetric center of 5-oxo-2-tetrahydrofurancarboxylic acid (9), both enantiomers of which are commercially available. The latent quinone functionality as well as the required "anti" relative stereochemistry in aryl acetic ester 6 would be introduced by a pinacol-type ketal rearrangement, a highly stereocontrolled process that has seen few applications in complex molecule synthesis.⁴ The tricyclic elisabethin framework would be constructed by an intramolecular Diels—Alder (IMDA) reaction of an *E*,*Z*-diene unit with quinone portion of 5, a transformation that was expected to create three of the remaining five chiral centers of elisapterosin B. The final two stereocenters would be installed through a biosynthesis-inspired oxidative cyclization.

The desired rearrangement product, alkyne-ester **16** (Scheme 2), was synthesized starting with *S*-(+)-tetrahydro-5-oxo-2-furancarboxylic acid, which was prepared from the inexpensive L-enantiomer of glutamic acid.⁵ The selection of the simple dimethoxyaryl precursor was predicated on the expectation that it could be oxidized selectively at a later stage to the required methoxy-*p*-quinone. The coupling of acid chloride **11**⁶ to the Grignard reagent of aryl

§ Present address: Pfizer Inc., Nagoya Laboratories, 5-2 Taketoyo, Aiichi, Japan.

13022 J. AM. CHEM. SOC. 2003, 125, 13022-13023

^{*a*} (a) ArMgBr, ZnCl₂, cat. PdCl₂(PPh₃)₂, THF (75%); (b) cat. TsOH, HC(OMe)₃, MeOH; *t*-BuOK, THF, (83%); (c) NaHMDS, MeI, THF, (86%); (d) DIBAL, toluene; (e) (MeO)₂P(O)CHN₂, *t*-BuOK, THF (70% overall); (f) MsCl, 2,6-lutidine, 50 °C; (g) CaCO₃, wet MeOH, 50 °C (72%, 2 steps).

16

15

bromide $(10)^7$ was mediated by ZnCl₂ and a palladium catalyst,⁸ and the resulting ketone was subjected to ketal-forming conditions. The expected methyl ketal was accompanied by the lactone methanolysis product, so that the crude product was treated with *t*-BuOK to yield lactone 12 in 83% overall yield. Methylation of the lithium enolate of lactone 12 afforded the desired trans product (13) with 8:1 diastereoselectivity. The required one-carbon homologation of

10.1021/ja035898h CCC: \$25.00 © 2003 American Chemical Society

Scheme 3^a

^{*a*} (a) cat. AgNO₃, NBS (1.0 equiv), acetone, rt; (b) H₂NNHTs (6 equiv), AcONa (7 equiv), MeOH, Δ , 65% 2 steps; (c) *E*-1-bromopropene (1.2 equiv), *t*-BuLi (2.4 equiv), -78 °C; ZnCl₂ (1.2 equiv), PdCl₂(dppf) (0.01 equiv), THF, rt, 70%; (d) DIBAL, -95 °C; (e) Wittig, 62% for 2 steps; (f) NaSEt (10 equiv), DMF, 90 °C, 67%; (g) O₂, cat. Salcomine, DMF, rt, 49%; (h) toluene, 80 °C, 67%.

the lactone carbonyl to alkyne **14** was achieved through an efficient two-step sequence. Reduction of the lactone with DIBAL followed by treatment of the crude lactol intermediate with the Seyferth reagent⁹ furnished acetylene **14**, poised for the pivotal pinacol-type rearrangement.⁴ The aryl group migration was triggered upon heating the mesylate of **14** in methanol in the presence of excess calcium carbonate as an acid scavenger to furnish methyl ester **16** in 72% yield.

In preparation for the IMDA reaction (Scheme 3), the acetylene was converted to the *Z*-bromoalkene (**17**), cross-coupling of which with *E*-bromopropene afforded diene **18**.¹⁰ The ester functionality was transformed into the 2-methylpropenyl side chain via DIBAL reduction followed by Wittig olefination. Regioselective demethylation¹¹ of the more hindered methyl ether provided phenol **19**, which upon subjection to Salcomine-catalyzed oxidation¹² yielded quinone **20**, required for the IMDA reaction. Upon heating in toluene, compound **20** underwent a clean cycloaddition to afford the expected *endo* adduct as a single diastereomer. Of the two *endo* transition states, the one shown below avoids potentially severe allylic strain between the C7-Me group and propenyl unit on the *cis*-double bond. The assigned relative stereochemistry is consistent with NOE results as well as with the further conversion of **21** to elisapterosin B (vide infra).

Selective hydrogenation of the Diels–Alder product (21), accomplished in quantitative yield with Wilkinson's catalyst, gave 22, which is just an epimerization and O-demethylation away from *ent*-elisabethin A. Contrary to expectations, however, ene-dione 22 proved recalcitrant to deprotonation at C2: no epimerization was evident even with sodium ethoxide in refluxing ethanol. On the other hand, the elisabethin skeleton of 22 was primed for testing the biosynthesis-based cyclization to the elisapterosins. The methyl ether was smoothly cleaved upon heating with LiI in 2,6-lutidine to furnish enol *ent*-1 β in quantitative yield. The oxidative cyclization of *ent*-1 β to elisapterosin B (*ent*-2) took place smoothly and in high yield upon treatment with Ce(NH₄)₂(NO₃)₆, followed by addition of pyridine and triethylamine, to enolize the presumed diketone intermediate. The ¹H and ¹³C NMR spectra of our synthetic sample perfectly matched those of natural elisapterosin B.

In summary, we have completed a stereocontrolled asymmetric synthesis of the enantiomer of elisapterosin B, by a route that features (a) a pinacol-type ketal rearrangement to transfer chirality, (b) an IMDA reaction of an E,Z-diene to construct the elisabethin skeleton, and (c) a biosynthesis-inspired oxidative cyclization of the elisabethin precursor to elisapterosin B (Scheme 4).

Acknowledgment. We thank the donors of The American Chemical Society Petroleum Research Fund for partial support of this work and Pfizer Inc. (Japan) for partial postdoctoral fellowship support to N.W. (3/2000–4/2002). We are grateful to Professor A. D. Rodríguez of the University of Puerto Rico for kindly providing spectra of elisabethin A and elisapterosin B.

Supporting Information Available: ¹H and ¹³C NMR spectra (PDF) of all key intermediates (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Rodríguez, A. D. Tetrahedron 1995, 51, 4571-618. (b) Rodríguez, A. D.; Gonzalez, E.; Huang, S. D. J. Org. Chem. 1998, 63, 7083-7091.
 (c) Rodríguez, A. D.; Ramirez, C. Org. Lett. 2000, 2, 507-510. (d) Rodríguez, A. D.; Ramirez, C.; Medina, V.; Shi, Y. P. Tetrahedron Lett. 2000, 41, 5177-5180. (e) Rodríguez, A. D.; Ramirez, C.; Rodríguez, I. I.; Barnes, C. L. J. Org. Chem. 2000, 65, 1390-1398. (f) Rodríguez, A. D.; Ramirez, C.; Shi, Y.-P. J. Org. Chem. 2000, 56, 6682-6687. (g) Rodríguez, A. D.; Shi, Y.-P. Tetrahedron 2000, 56, 9015-9023.
- 2000, 41, 517/-5180. (e) Rodriguez, A. D.; Ramirez, C.; Rodriguez, I. I.; Barnes, C. L. J. Org. Chem. 2000, 65, 1390-1398. (f) Rodriguez, A. D.; Ramirez, C.; Shi, Y.-P. J. Org. Chem. 2000, 65, 6682-6687. (g) Rodriguez, A. D.; Shi, Y.-P. Tetrahedron 2000, 56, 9015-9023.
 (2) Colombiasin: (a) Nicolaou, K. C.; Vassilikogiannakis, G.; Magerlein, W.; Kranich, R. Chem. Eur. J. 2001, 7, 5359-5371. (b) Nicolaou, K. C.; Vassilikogiannakis, G.; Magerlein, W.; Kranich, R. Angew. Chem., Int. Ed. 2001, 40, 2482-2486. (c) Harrowven, D. C.; Tyte, M. J. Tetrahedron Lett. 2001, 42, 8709-8711. See also ref 3b.
- (3) While this manuscript was in preparation, the syntheses of two other elisabethane terpenes have appeared. (a) Elisabethin A: Heckrodt, T. J.; Mulzer, J. J. Am. Chem. Soc. 2003, 125, 4680–4681 and references therein. (b) Pseutopterosin B: Kim, A. I.; Rychnovsky, S. D. Angew. Chem., Int. Ed. 2003, 42, 1267–1270. This paper also describes the synthesis of colombiasin. (c) Miyaoka, H.; Honda, D.; Mitome, H.; Yamada, Y. Tetrahedron Lett. 2002, 43, 7773–7775.
- (4) (a) Tsuchihashi, G., Kitajima, K., Mitamura, M. *Tetrahedron Lett.* 1981, 22, 4305–4308. (b) Honda, Y.; Ori, A.; Tsuchihashi, G. *Bull. Chem. Soc. Jpn.* 1987, 60, 1027–1036 and references therein.
- (5) Gringore, O. H.; Rouessac, F. P. Org. Synth. 1985, 63, 99–102. We elected to use L-glutamic acid rather than D-glutamic acid, since the latter is considerably more costly (Aldrich: \$31.80 for 1.0 kg vs \$262.40 for 100 g).
- (6) Acid chloride 11 is commercially available from Pfaltz & Bauer, Inc.
 (7) (a) Schlegel, D. C.; Tipton, C. D.; Rinehart, K. L., Jr. J. Org. Chem. 1970, 35, 849-850. (b) Zhao, H.; Biehl, E. J. Nat. Prod. 1995, 58, 1970-1974.
- (8) Negishi, E.; Bagheri, V.; Chatterjee, S.; Luo, F. T.; Miller, J. A.; Stoll, A. T. *Tetrahedron Lett.* **1983**, *24*, 5181–5184.
 (9) (a) Seyferth, D.; Marmor, R. S.; Hilbert, P. J. Org. Chem. **1971**, *36*, 1379–1206 (d) Columnation of the Column Science and Columnation of the C
- (9) (a) Seyferth, D.; Marmor, R. S.; Hilbert, P. J. Org. Chem. 1971, 36, 1379–1386. (b) Colvin, E. W.; Hamill, B. J. J. Chem. Soc., Chem. Commun. 1973, 151–152. (c) Colvin, E. W.; Hamill, B. J. J. Chem. Soc., Perkin Trans. 1 1977, 869–874. (d) Gilbert, J. C.; Weerasooriya, U. J. Org. Chem. 1979, 44, 4997–4998.
- (10) Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N. J. Am. Chem. Soc. 1987, 109, 2393–2401.
 (11) (a) Review: Evers, M. Chem. Scr. 1986, 26, 585–597. (b) Ahmad, R.;
- (11) (a) Review: Evers, M. Chem. Scr. 1986, 26, 585–597. (b) Ahmad, R.; Saá, J. M.; Cava, M. P. J. Org. Chem. 1977, 42, 1228–1230.
 (12) (a) Van Dort, H. M.; Geursen, H. J. Recl. Trav. Chim. Pays-Bas 1967,
- (12) (a) Van Dort, H. M.; Geursen, H. J. Recl. Trav. Chim. Pays-Bas 1967, 86, 520-6. (b) Parker, K. A.; Petraitis, J. J. Tetrahedron Lett. 1981, 22, 397-400.

JA035898H