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Over the past few years, Réguez and co-workers have reported  Scheme 1
the isolation of a series of structurally novel metabolites (&:g4)
from the gorgonian sea whifseudopterogorgia elisabethae
collected from the waters near San Arasésland, ColombiadThe
more intricate members of the family were suggested to be
biosynthesized from elisabethin A, which in turn arises from
geranylgeranyl pyrophosphate via a serrulatane precursor. The
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activity has made these terpenes attractive targets for chemical epi-elisabethin A (1p, pH)  aromatic
synthesig.In connection with the development of a general strategy Me oxidation
to these natural products, we describe here the stereocontrolled ) )

. . . ; . . . S —acetylenation
asymmetric synthesis of the elisabethin skeleton and its oxidative s S :

N . . 3 T 109 ——ketal o MeQ OMe
cyclization to elisapterosin B2J,® a potent in vitro inhibitor of MeO,C" - rearrangement SR
Mycobacterium tuberculosig37Rb? = MeO = A

6 7 Me OH
Me OMe
7
Ve DS
oM 0707 g
e 0
=  07g “u{-OMe =
“Ar " Negishi Br OMe
8 coupling
MeO Me 10
Scheme 2 2
Me
MeO OMe
ab c
Me  \d o@‘cool 0o -
OH MeO OMe
cumbiasin A (3) colombiasin A (4) " 12
Our synthetic plan to elisabethin and elisapterosin B (Scheme M Me MeO OMe
. h . . . € MeO OMe A
1) involves a series of diastereoselective reactions to set all of the ) de N f.g
stereocenters commencing with the single asymmetric center of 0=\, Me HO
5-oxo-2-tetrahydrofurancarboxylic aci®)( both enantiomers of MeO OMe MeO OMe
which are commercially available. The latent quinone functionality 13 14 Me
as well as the required “anti” relative stereochemistry in aryl acetic
ester6 would be introduced by a pinacol-type ketal rearrangement, “« MeQ0Me Me
a highly stereocontrolled process that has seen few applications in N MeO OMe
complex molecule synthestsThe tricyclic elisabethin framework Me H — X
would be constructed by an intramolecular Diefsider (IMDA) LS i OMe S S
reaction of anE,Z-diene unit with quinone portion d, a trans- 15 © 1 2

formation that was expected to create three of the remaining five
chiral centers of elisapterosin B. The final two stereocenters would

a(a) ArMgBr, ZnCh, cat. PAGI(PPh),, THF (75%); (b) cat. TsOH,

HC(OMe);, MeOH;t-BuOK, THF, (83%); (c) NaHMDS, Mel, THF, (86%);

be installed through a biosynthesis-inspired oxidative cyclization. (g piBAL, toluene: () (MeOYP(O)CHN, t-BUOK, THF (70% overall);

The desired rearrangement product, alkyne-gi¢Bcheme 2),

was synthesized starting with(+)-tetrahydro-5-oxo-2-furancar- ) ) )
boxylic acid, which was prepared from the inexpensivenanti- bromide (0)’ was mediated by Zngland a palladium catalyst,

omer of glutamic acid.The selection of the simple dimethoxyaryl and the resulting ketone was subjected to Ketal-forming conditions.
precursor was predicated on the expectation that it could be oxidized T he expected methyl ketal was accompanied by the lactone meth-
selectively at a later stage to the required methpsquinone. The ~ @nolysis product, so that the crude product was treatedtvttOK

coupling of acid chloridel1® to the Grignard reagent of aryl to yield lactonel2in 83% overallyield.. Methylation of the Iithium
enolate of lactond 2 afforded the desired trans produd) with

§ Present address: Pfizer Inc., Nagoya Laboratories, 5-2 Taketoyo, Aiichi, Japan. 8:1 diastereoselectivity. The required one-carbon homologation of

(f) MsCl, 2,6-lutidine, 50°C; (g) CaCQ, wet MeOH, 50°C (72%, 2 steps).
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a(a) cat. AQNQ, NBS (1.0 equiv), acetone, rt; (b,NNHTSs (6 equiv),
AcONa (7 equiv), MeOHA, 65% 2 steps; (CE-1-bromopropene (1.2
equiv), t-BuLi (2.4 equiv),—78 °C; ZnCh (1.2 equiv), PdG(dppf) (0.01
equiv), THF, rt, 70%; (d) DIBAL,—95 °C; (e) Wittig, 62% for 2 steps; (f)
NaSEt (10 equiv), DMF, 90C, 67%; (g) Q, cat. Salcomine, DMF, rt,
49%; (h) toluene, 80C, 67%.
the lactone carbonyl to alkyriel was achieved through an efficient
two-step sequence. Reduction of the lactone with DIBAL followed
by treatment of the crude lactol intermediate with the Seyferth
reagerit furnished acetylen&4, poised for the pivotal pinacol-type
rearrangemerftThe aryl group migration was triggered upon heat-
ing the mesylate of4in methanol in the presence of excess calcium
carbonate as an acid scavenger to furnish methyl ééter 72%
yield.

In preparation for the IMDA reaction (Scheme 3), the acetylene
was converted to the-bromoalkene7), cross-coupling of which
with E-bromopropene afforded dierd8.2° The ester functionality
was transformed into the 2-methylpropenyl side chain via DIBAL
reduction followed by Wittig olefination. Regioselective demeth-

Scheme 4
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b. CAN, MeCN
0°C, 10 min;
pyr, Et3N, 50 °C
(84%)
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In summary, we have completed a stereocontrolled asymmetric

synthesis of the enantiomer of elisapterosin B, by a route that
features (a) a pinacol-type ketal rearrangement to transfer chirality,
(b) an IMDA reaction of arE,Z-diene to construct the elisabethin
skeleton, and (c) a biosynthesis-inspired oxidative cyclization of
the elisabethin precursor to elisapterosin B (Scheme 4).
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ylation* of the more hindered methyl ether provided pheb@l
which upon subjection to Salcomine-catalyzed oxiddfigielded
quinone 20, required for the IMDA reaction. Upon heating in
toluene, compoun@0 underwent a clean cycloaddition to afford
the expecteéndoadduct as a single diastereomer. Of the amdo
transition states, the one shown below avoids potentially severe
allylic strain between the C7-Me group and propenyl unit on the
cis-double bond. The assigned relative stereochemistry is consistent
with NOE results as well as with the further conversion2afto
elisapterosin B (vide infra).

Observed NOEs

Selective hydrogenation of the Diel&lder product 21),
accomplished in quantitative yield with Wilkinson’s catalyst, gave
22, which is just an epimerization and O-demethylation away from
entelisabethin A. Contrary to expectations, however, ene-ddhe
proved recalcitrant to deprotonation at C2: no epimerization was
evident even with sodium ethoxide in refluxing ethanol. On the
other hand, the elisabethin skeleton2&was primed for testing
the biosynthesis-based cyclization to the elisapterosins. The methyl
ether was smoothly cleaved upon heating with Lil in 2,6-lutidine
to furnish enoknt 14 in quantitative yield. The oxidative cyclization
of ent1p to elisapterosin Begnt2) took place smoothly and in high
yield upon treatment with Ce(Nfb(NOs)s, followed by addition
of pyridine and triethylamine, to enolize the presumed diketone
intermediate. ThéH and3C NMR spectra of our synthetic sample
perfectly matched those of natural elisapterosin B.
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